Definition
A binary search tree is a data structure consisting of a set of ordered linked nodes that represent a hierarchical tree structure. Each node is linked to others via parent-children relationship. Any given node can have at most two children (left and right). The first node in the binary search tree is the root, whereas nodes without any children are the leaves. The binary search tree is organized in such a way that for any given node, all nodes in its left subtree have a key less than itself and all nodes in its right subtree have a key greater than itself.
Each node in a binary search tree data structure must have the following properties:
key
: The key of the nodevalue
: The value of the nodeparent
: The parent of the node (null
if there is none)left
: A pointer to the node’s left child (null
if there is none)right
: A pointer to the node’s right child (null
if there is none)
The main operations of a binary search tree data structure are:
insert
: Inserts a node as a child of the given parent noderemove
: Removes a node and its children from the binary search treehas
: Checks if a given node existsfind
: Retrieves a given nodepreOrderTraversal
: Traverses the binary search tree by recursively traversing each node followed by its childrenpostOrderTraversal
: Traverses the binary search tree by recursively traversing each node’s children followed by the nodeinOrderTraversal
: Traverses the binary search tree by recursively traversing each node’s left child, followed by the node, followed by its right child
Implementation
代码实现
class BinarySearchTreeNode {
constructor(key, value = key, parent = null) {
this.key = key;
this.value = value;
this.parent = parent;
this.left = null;
this.right = null;
}
get isLeaf() {
return this.left === null && this.right === null;
}
get hasChildren() {
return !this.isLeaf;
}
}
class BinarySearchTree {
constructor(key, value = key) {
this.root = new BinarySearchTreeNode(key, value);
}
*inOrderTraversal(node = this.root) {
if (node.left) yield* this.inOrderTraversal(node.left);
yield node;
if (node.right) yield* this.inOrderTraversal(node.right);
}
*postOrderTraversal(node = this.root) {
if (node.left) yield* this.postOrderTraversal(node.left);
if (node.right) yield* this.postOrderTraversal(node.right);
yield node;
}
*preOrderTraversal(node = this.root) {
yield node;
if (node.left) yield* this.preOrderTraversal(node.left);
if (node.right) yield* this.preOrderTraversal(node.right);
}
insert(key, value = key) {
let node = this.root;
while (true) {
if (node.key === key) return false;
if (node.key > key) {
if (node.left !== null) node = node.left;
else {
node.left = new BinarySearchTreeNode(key, value, node);
return true;
}
} else if (node.key < key) {
if (node.right !== null) node = node.right;
else {
node.right = new BinarySearchTreeNode(key, value, node);
return true;
}
}
}
}
has(key) {
for (let node of this.postOrderTraversal()) {
if (node.key === key) return true;
}
return false;
}
find(key) {
for (let node of this.postOrderTraversal()) {
if (node.key === key) return node;
}
return undefined;
}
remove(key) {
const node = this.find(key);
if (!node) return false;
const isRoot = node.parent === null;
const isLeftChild = !isRoot ? node.parent.left === node : false;
const hasBothChildren = node.left !== null && node.right !== null;
if (node.isLeaf) {
if (!isRoot) {
if (isLeftChild) node.parent.left = null;
else node.parent.right = null;
} else {
this.root = null;
}
return true;
} else if (!hasBothChildren) {
const child = node.left !== null ? node.left : node.right;
if (!isRoot) {
if (isLeftChild) node.parent.left = child;
else node.parent.right = child;
} else {
this.root = child;
}
child.parent = node.parent;
return true;
} else {
const rightmostLeft = [...this.inOrderTraversal(node.left)].slice(-1)[0];
rightmostLeft.parent = node.parent;
if (!isRoot) {
if (isLeftChild) node.parent.left = rightmostLeft;
else node.parent.right = rightmostLeft;
} else {
this.root = rightmostLeft;
}
rightmostLeft.right = node.right;
node.right.parent = rightmostLeft;
return true;
}
}
}
- Create a
class
for theBinarySearchTreeNode
with aconstructor
that initializes the appropriatekey
,value
,parent
,left
andright
properties. - Define an
isLeaf
getter, that usesArray.prototype.length
to check if bothleft
andright
are empty. - Define a
hasChildren
getter, that is the reverse of theisLeaf
getter. - Create a
class
for theBinarySearchTree
with aconstructor
that initializes theroot
of the binary search tree. - Define a
preOrderTraversal()
generator method that traverses the binary search tree in pre-order, using theyield*
syntax to recursively delegate traversal to itself. - Define a
postOrderTraversal()
generator method that traverses the binary search tree in post-order, using theyield*
syntax to recursively delegate traversal to itself. - Define a
inOrderTraversal()
generator method that traverses the binary search tree in in-order, using theyield*
syntax to recursively delegate traversal to itself. - Define an
insert()
method, that uses awhile
loop to search the binary search tree, moving through each node’s children, until an appropriate position is found to insert a new childBinarySearchTreeNode
either as theleft
orright
child, depending on the givenkey
. - Define a
has()
method, that uses thepreOrderTraversal()
method to check if the given node exists in the binary search tree. - Define a
find()
method, that uses thepreOrderTraversal()
method to retrieve the given node in the binary search tree. - Define a
remove()
method, that removes the givenBinarySearchTreeNode
from the binary search tree, deleting any links to it and updating the binary search tree to retain its order.
使用样例
const tree = new BinarySearchTree(30);
tree.insert(10);
tree.insert(15);
tree.insert(12);
tree.insert(40);
tree.insert(35);
tree.insert(50);
[...tree.preOrderTraversal()].map(x => x.value);
// [30, 10, 15, 12, 40, 35, 50]
[...tree.inOrderTraversal()].map(x => x.value);
// [10, 12, 15, 30, 35, 40, 50]
[...tree.postOrderTraversal()].map(x => x.value);
// [12, 15, 10, 35, 50, 40, 30]
tree.root.value; // 30
tree.root.hasChildren; // true
tree.find(12).isLeaf; // true
tree.find(40).isLeaf; // false
tree.find(50).parent.value; // 40
tree.find(15).left.value; // 12
tree.find(12).right; // null
tree.remove(12);
[...tree.preOrderTraversal()].map(x => x.value);
// [30, 10, 15, 40, 35, 50]
tree.remove(10);
[...tree.preOrderTraversal()].map(v => ({
key: v.key,
parent: v.parent ? v.parent.key : null,
})); // [30, 15, 40, 35, 50]
tree.remove(40);
[...tree.preOrderTraversal()].map(x => x.value);
// [30, 15, 40, 35, 50]
tree.remove(30);
[...tree.preOrderTraversal()].map(x => x.value);
// [15, 35, 50]
翻译自:https://www.30secondsofcode.org/js/s/data-structures-binary-search-tree