30秒学会 JavaScript 片段 · 2022年12月15日

30秒学会 JavaScript 片段 – JavaScript Data Structures – Binary Search Tree

Definition

A binary search tree is a data structure consisting of a set of ordered linked nodes that represent a hierarchical tree structure. Each node is linked to others via parent-children relationship. Any given node can have at most two children (left and right). The first node in the binary search tree is the root, whereas nodes without any children are the leaves. The binary search tree is organized in such a way that for any given node, all nodes in its left subtree have a key less than itself and all nodes in its right subtree have a key greater than itself.

JavaScript Binary Search Tree visualization

Each node in a binary search tree data structure must have the following properties:

  • key: The key of the node
  • value: The value of the node
  • parent: The parent of the node (null if there is none)
  • left: A pointer to the node’s left child (null if there is none)
  • right: A pointer to the node’s right child (null if there is none)

The main operations of a binary search tree data structure are:

  • insert: Inserts a node as a child of the given parent node
  • remove: Removes a node and its children from the binary search tree
  • has: Checks if a given node exists
  • find: Retrieves a given node
  • preOrderTraversal: Traverses the binary search tree by recursively traversing each node followed by its children
  • postOrderTraversal: Traverses the binary search tree by recursively traversing each node’s children followed by the node
  • inOrderTraversal: Traverses the binary search tree by recursively traversing each node’s left child, followed by the node, followed by its right child

Implementation

代码实现

class BinarySearchTreeNode {
  constructor(key, value = key, parent = null) {
    this.key = key;
    this.value = value;
    this.parent = parent;
    this.left = null;
    this.right = null;
  }

  get isLeaf() {
    return this.left === null && this.right === null;
  }

  get hasChildren() {
    return !this.isLeaf;
  }
}

class BinarySearchTree {
  constructor(key, value = key) {
    this.root = new BinarySearchTreeNode(key, value);
  }

  *inOrderTraversal(node = this.root) {
    if (node.left) yield* this.inOrderTraversal(node.left);
    yield node;
    if (node.right) yield* this.inOrderTraversal(node.right);
  }

  *postOrderTraversal(node = this.root) {
    if (node.left) yield* this.postOrderTraversal(node.left);
    if (node.right) yield* this.postOrderTraversal(node.right);
    yield node;
  }

  *preOrderTraversal(node = this.root) {
    yield node;
    if (node.left) yield* this.preOrderTraversal(node.left);
    if (node.right) yield* this.preOrderTraversal(node.right);
  }

  insert(key, value = key) {
    let node = this.root;
    while (true) {
      if (node.key === key) return false;
      if (node.key > key) {
        if (node.left !== null) node = node.left;
        else {
          node.left = new BinarySearchTreeNode(key, value, node);
          return true;
        }
      } else if (node.key < key) {
        if (node.right !== null) node = node.right;
        else {
          node.right = new BinarySearchTreeNode(key, value, node);
          return true;
        }
      }
    }
  }

  has(key) {
    for (let node of this.postOrderTraversal()) {
      if (node.key === key) return true;
    }
    return false;
  }

  find(key) {
    for (let node of this.postOrderTraversal()) {
      if (node.key === key) return node;
    }
    return undefined;
  }

  remove(key) {
    const node = this.find(key);
    if (!node) return false;
    const isRoot = node.parent === null;
    const isLeftChild = !isRoot ? node.parent.left === node : false;
    const hasBothChildren = node.left !== null && node.right !== null;

    if (node.isLeaf) {
      if (!isRoot) {
        if (isLeftChild) node.parent.left = null;
        else node.parent.right = null;
      } else {
        this.root = null;
      }
      return true;
    } else if (!hasBothChildren) {
      const child = node.left !== null ? node.left : node.right;
      if (!isRoot) {
        if (isLeftChild) node.parent.left = child;
        else node.parent.right = child;
      } else {
        this.root = child;
      }
      child.parent = node.parent;
      return true;
    } else {
      const rightmostLeft = [...this.inOrderTraversal(node.left)].slice(-1)[0];
      rightmostLeft.parent = node.parent;
      if (!isRoot) {
        if (isLeftChild) node.parent.left = rightmostLeft;
        else node.parent.right = rightmostLeft;
      } else {
        this.root = rightmostLeft;
      }
      rightmostLeft.right = node.right;
      node.right.parent = rightmostLeft;
      return true;
    }
  }
}
  • Create a class for the BinarySearchTreeNode with a constructor that initializes the appropriate key, value, parent, left and right properties.
  • Define an isLeaf getter, that uses Array.prototype.length to check if both left and right are empty.
  • Define a hasChildren getter, that is the reverse of the isLeaf getter.
  • Create a class for the BinarySearchTree with a constructor that initializes the root of the binary search tree.
  • Define a preOrderTraversal() generator method that traverses the binary search tree in pre-order, using the yield* syntax to recursively delegate traversal to itself.
  • Define a postOrderTraversal() generator method that traverses the binary search tree in post-order, using the yield* syntax to recursively delegate traversal to itself.
  • Define a inOrderTraversal() generator method that traverses the binary search tree in in-order, using the yield* syntax to recursively delegate traversal to itself.
  • Define an insert() method, that uses a while loop to search the binary search tree, moving through each node’s children, until an appropriate position is found to insert a new child BinarySearchTreeNode either as the left or right child, depending on the given key.
  • Define a has() method, that uses the preOrderTraversal() method to check if the given node exists in the binary search tree.
  • Define a find() method, that uses the preOrderTraversal() method to retrieve the given node in the binary search tree.
  • Define a remove() method, that removes the given BinarySearchTreeNode from the binary search tree, deleting any links to it and updating the binary search tree to retain its order.

使用样例

const tree = new BinarySearchTree(30);

tree.insert(10);
tree.insert(15);
tree.insert(12);
tree.insert(40);
tree.insert(35);
tree.insert(50);

[...tree.preOrderTraversal()].map(x => x.value);
// [30, 10, 15, 12, 40, 35, 50]

[...tree.inOrderTraversal()].map(x => x.value);
// [10, 12, 15, 30, 35, 40, 50]

[...tree.postOrderTraversal()].map(x => x.value);
// [12, 15, 10, 35, 50, 40, 30]

tree.root.value;                // 30
tree.root.hasChildren;          // true

tree.find(12).isLeaf;           // true
tree.find(40).isLeaf;           // false
tree.find(50).parent.value;     // 40
tree.find(15).left.value;       // 12
tree.find(12).right;            // null

tree.remove(12);

[...tree.preOrderTraversal()].map(x => x.value);
// [30, 10, 15, 40, 35, 50]

tree.remove(10);

[...tree.preOrderTraversal()].map(v => ({
  key: v.key,
  parent: v.parent ? v.parent.key : null,
})); // [30, 15, 40, 35, 50]

tree.remove(40);

[...tree.preOrderTraversal()].map(x => x.value);
// [30, 15, 40, 35, 50]

tree.remove(30);

[...tree.preOrderTraversal()].map(x => x.value);
// [15, 35, 50]

翻译自:https://www.30secondsofcode.org/js/s/data-structures-binary-search-tree